Describing soil surface microrelief by crossover length and fractal dimension

نویسندگان

  • E. Vidal Vázquez
  • J. G. V. Miranda
  • A. Paz González
چکیده

Accurate description of soil surface topography is essential because different tillage tools produce different soil surface roughness conditions, which in turn affects many processes across the soil surface boundary. Advantages of fractal analysis in soil microrelief assessment have been recognised but the use of fractal indices in practice remains challenging. There is also little information on how soil surface roughness decays under natural rainfall conditions. The objectives of this work were to investigate the decay of initial surface roughness induced by natural rainfall under different soil tillage systems and to compare the performances of a classical statistical index and fractal microrelief indices. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil). Six tillage treatments, namely, disc harrow, disc plow, chisel plow, disc harrow + disc level, disc plow + disc level and chisel plow + disc level were tested. Measurements were made four times, firstly just after tillage and subsequently with increasing amounts of natural rainfall. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental surfaces. The sampling scheme was a square grid with 25×25 mm point spacing and the plot size was 1350×1350 mm, so that each data set consisted of 3025 individual elevation points. Statistical and fractal indices were calculated both for oriented and random roughness conditions, i.e. after height reading have been corrected for slope and for slope and tillage tool marks. The main drawback of the standard statistical index random roughness, RR, lies in its no spatial nature. The fractal approach requires two indices, fractal dimension, D, which describes how roughness changes with scale, and crossover length, l, specifying the variance of surface microrelief at a reference scale. Fractal parameters D and l, were estimated by two independent selfaffine models, semivariogram (SMV) and local root mean Correspondence to: A. Paz González ([email protected]) square (RMS). Both algorithms, SMV and RMS, gave equivalent results for D and l indices, irrespective of trend removal procedure, even if some bias was present which is in accordance with previous work. Treatments with two tillage operations had the greatest D values, irrespective of evolution stage under rainfall and trend removal procedure. Primary tillage had the greatest initial values of RR and l. Differences in D values between treatments with primary tillage and those with two successive tillage operations were significant for oriented but not for random conditions. The statistical index RR and the fractal indices l and D decreased with increasing cumulative rainfall following different patterns. The l and D decay from initial value was very sharp after the first 24.4 mm cumulative rainfall. For five out of six tillage treatments a significant relationship between D and l was found for the random microrelief conditions allowing a covariance analysis. It was concluded that using RR or l together with D best allow joint description of vertical and horizontal soil roughness variations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roughness Measurements of Soil Surfaces by Acoustic Backscatter

surfaces may have the same roughness index but one surface may have the roughness on average spaced farThe measurement of the roughness of soil surfaces on centimeter ther apart on the surface. A more complete characterizascales is important to modeling local soil erodibility. An acoustic backscatter technique was examined for its ability to quantify the tion would describe not only vertical sc...

متن کامل

Pore surface fractal dimension of sol-gel derived nanoporous SiO2-ZrO2 membrane

In this work, SiO2 –ZrO2 mixed oxides was prepared by the polymeric sol–gel route. The characterization of pore structure, which determines the permeation process of membrane, is of great importance. So far, most investigations have focused on such pore structure as specific surface area and pore size distribution, but the surface fractal, the important parameter reflecting the roughness of por...

متن کامل

Fractal Particle Trajectories in Capillary Waves: Imprint of Wavelength

We examine particle trajectories in capillary waves formed on a water surface subject to vertical vibrations. We focus on the role of a distinct length scale present in our experiment, namely, the wavelength l of the surface waves. We observe non-Brownian particle trajectories with a fractal dimension D different from the random walk value D ­ 2. A crossover is observed from one anomalous behav...

متن کامل

Multifractal Analysis of Soil Surface Roughness

Soil surface roughness (SSR) is a parameter highly suited to the study of soil susceptibility to wind and water erosion. The development of a methodology for quantifying SSR is therefore instrumental to soil evaluation. We developed such a method, based on the multifractal analysis (MFA) of soil elevation measurements collected at the intersections on a 2by 2-cm grid in a 200by 200-cm plot. Sam...

متن کامل

Adaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform

In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008